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ABSTRACT: A polystyrene (PS)/rubber blend compatibilized with PS-g-rubber copolymer, prepared via emulsion polymerization using

redox initiator system, is used to investigate the utilization of central composite design (CCD) and artificial neural network (ANN)

approaches in correlating polymerization conditions to mechanical properties (tensile strength and abrasion loss) of unfilled com-

pound vulcanizates. The conditions were manipulated by changing four factors: reaction temperature and time, percentage of depro-

teinized rubber in the mixture containing natural rubber, and amount of chain transfer agent. The results show that the relationships

between the conditions and the mechanical properties for compatibilized PS/rubber blend are too complex to be explained by poly-

nomials, but are well described by the ANN models, developed for each response. In addition, simulation results for the tensile

strength response as a function of those factors using the obtained ANN are in agreement with literature, whereas those results for

the abrasion loss do not quite agree with literature due to the interference of the large measurement error. This suggests that only ex-

perimental data with high precision should be used to train an ANN to achieve a model with not only best performance but also

high reliability. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Natural rubber from Hevea brasiliensis is an elastomer of inter-

est herein due to its abundance in Thailand. One effective way

to increase its value-added price is to improve its mechanical

properties. It is commonly known that this can be done by

blending with a small quantity of thermoplastic polymer pos-

sessing superior mechanical properties and/or by vulcanization

that induces the crosslink density of the rubber phase.1–3

In blending thermoplastic and elastomer that are immiscible, a

two-phase system normally occurs. The lack of interpenetration

at the phase boundaries causes a reduction in the useful me-

chanical properties. Thus, it is often necessary to improve the

compatibility between the two phases by the addition of compa-

tibilizers, such as graft or block copolymers, prepared from the

thermoplastic and the elastomer themselves or from different

polymer pairs with similar chemical structures to them. Such a

compatibilizer can penetrate into both phases at the interface,

thus improving interfacial adhesion between two phases in poly-

mer/rubber blends and acting as an emulsifier that reduces the

size of the dispersed domains.4–9 For instance, polystyrene–nat-

ural rubber graft copolymer (PS-g-NR) and polystyrene–polybu-

tadiene block copolymer (PS-block-PB) enhance the compatibil-

ity of PS/NR blend and PS/PB blend, respectively.8,10–12 A

copolymer can be either directly added into polymer blends or

made during the polymerization of thermoplastic monomers in

the presence of rubber particles (some of monomers are grafted

onto rubber particles to form graft/block copolymer and some

become homopolymers).8,10–12

In addition to the crosslink density of the rubber phase due to

vulcanization, the improvement of mechanical properties of the

compatibilized polymer/rubber blends reportedly depends on

the amount of graft copolymer and its composition. The posi-

tive effect of grafting amount on mechanical properties of per-

oxide vulcanizates of polymer/rubber blend is observed and

explained by the graft copolymer being able to reduce interfacial

energy between two phases and the domain size.13 The inverse

effect reportedly exists when grafting amount is excessive, which

is attributed to the formation of a thick layer of excessive

VC 2012 Wiley Periodicals, Inc.
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grafting molecules around dispersed phases, destabilizing the

phase morphology, and lowering the mechanical properties.14 It

should also be noted that when saturation of graft copolymer

on the domain surface is reached, the further reduction of dis-

persed domain size with increasing the graft copolymer concen-

tration is not discerned.15,16 Moreover, Chuayjuljit et al.17

attributed an increase in the tensile strength of the 30/70 PS/NR

blend film containing PS-NR graft copolymer to the higher PS

level in the graft copolymer and the hard brittle nature of PS.

It is reported that proteins in the rubber can compete for free

radical species, resulting in lower amount of chain grafted onto

natural rubber, and lower monomer conversion.18–20 In addi-

tion, the proteins, being hydrophilic by nature, in unvulcanized

natural rubber can absorb moisture from the atmosphere, lead-

ing to the deterioration in degree of crosslinking and other cure

characteristics of some vulcanizing systems, and thus causing

variation in the modulus of vulcanized rubber.21 Accordingly,

the amount of deproteinized natural rubber (DPNR) in polymer

blends may potentially affect mechanical properties.

Literature data indicated that the amount of graft copolymer

’and its composition can be controlled by polymerization condi-

tions—e.g., reaction time and temperature, amount of chain

transfer agent (CTA), type of natural rubber latex (deprotei-

nized or fresh natural rubber latex).20,22–27 This implies a corre-

lation between the polymerization conditions and the mechani-

cal properties. In consequence, it is interesting to develop a

model that correlates the conditions to the properties of poly-

mer/rubber blends because the model will assist researchers in

designing new polymer/rubber blends with desired properties

by simply changing model inputs (i.e., reaction conditions)

without actually conducting experiments. Response surface

methodology (RSM) and artificial neural networks (ANNs) are

tools that have potential to fulfill this requirement without

understanding the underlying mechanisms.

Central composite design (CCD), one of the most important

response surface methods, utilizes available data and an interpo-

lation method to form a polynomial function.28 It can be used

not only to optimize process variables in order to obtain the

maximum or minimum response, but also to study the influences

of those variables and their interactions on the process response.

Several studies reported the use of CCD in studying the optimi-

zation, interactions, and influences of conditions of graft

polymerization on response values, such as degree of grafting,

grafting efficiency, and processing torque.29,30 Nevertheless, none

of these focused on the correlation between mechanical proper-

ties and polymerization conditions of polymer/rubber blends.

An ANN, in a metaphorical sense, is composed of a biological

brain having two sets of nervous systems acting as input and

output streams. Through the nervous system, experimental data

input and output values are given to the ‘‘brain.’’ The brain

scrutinizes the relationship between the input and output data

and finally obtains parameters that are hidden in the brain and

cannot be extracted. Though a mathematical model cannot be

obtained from the approach, the ANN approach is known for

its reliability in predicting response values, high resistance to

noisy or missing data, and capability to handle a number of

variables with unknown interactions.31 Many researchers suc-

cessfully used this approach to investigate many polymer-related

systems that possess nonlinear or complex relationship between

the independent and dependent variables, including polymer

blends/composites and graft polymerizations.32–38 Most of inde-

pendent and dependent variables in those reports are curing

conditions (or fractions of polymers) and corresponding me-

chanical properties or polymerization conditions and corre-

sponding monomer conversion. As with the RSM application,

no one has ever attempted to establish an ANN that maps the

graft polymerization conditions to mechanical properties of

polymer/rubber blends.

In this work, the compatibilized PS/rubber blend was prepared

by allowing styrene monomers to react with themselves and

with the NR-DPNR mixture using emulsion polymerization

under various reaction conditions by changing four factors:

reaction temperature and time, weight percent of DPNR in the

rubber mixture, and amount of CTA. This article is the first

work that attempts to use CCD and ANN with the back-propa-

gation algorithm approaches to correlate the polymerization

conditions to the corresponding mechanical properties (i.e., ten-

sile strength and abrasion resistance). Additionally, we present

the results of our studies on the unfilled vulcanized system.

Later, the models with better performance were used to simulate

the properties as a function of each factor.

EXPERIMENTAL

Materials

Fresh NR latex with a solid content of 60% was purchased from

Thailand Natural Rubber Research Institute. DPNR with a nomi-

nal nitrogen content of 0.02% was prepared by allowing NR latex

to react with 0.1% urea in sodium dodecyl sulfate solution (SDS;

Fluka, purity � 90%) for 15 min in an ultrasonic bath, followed

by centrifugation to rinse latex particles in the 1% SDS solution.

The DPNR was later dissolved in an aqueous solution and imme-

diately used in the graft polymerization.27 Styrene monomer

(Merck, purity � 99%) was purified by washing several times

with an aqueous solution of 15% sodium hydroxide(NaOH). The

redox initiator, cumene hydroperoxide (CHPO; Fluka, purity

� 80%), and the activator agent, tetraethylene pentamine (TEPA;

Fluka, purity � 85%), were used as received. Potassium hydroxide

(Fluka) for pH control, SDS as an emulsifier, and other chemicals

were analytical grade and used as received.

Preparation of PS-g-Rubber

Following the recipe in Table I, the NR-DPNR mixture in a

certain ratio was purged with nitrogen for 30 min prior to the

respective addition of styrene, n-dodecyl mercaptan (used as

a CTA) and TEPA. The mixture, maintained at pH 10 and a

certain temperature, was continuously stirred at 400 rpm for

1 h to allow rubber particles to swell in styrene. At a stirring

speed of 400 rpm, upon the addition of CHPO, the reaction

instantaneously began and was stopped at a certain time by

dropping hydroquinone. To facilitate the milling, fresh NR latex

was added into the polymer solution such that the weight ratio

of fresh NR to the NR in the polymer solution was 2 : 1.
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Afterwards, the polymer coagulation was conducted by continu-

ously dropping 10% formic acid into the polymerized mixture,

and the obtained gross polymer was dried at 70�C for a week or

until a constant weight was obtained.

Compounding and Vulcanization

A semi-efficient vulcanization system was used in this work.

The compounding and vulcanization were as described in the

ASTM D3182. The dried gross polymer was mixed with vulcan-

izing agents in a two-roll mill maintained at 70�C (Table II).

The rubber compound was conditioned at room temperature

for 24 h before cure assessment on a Monsanto Die Rheometer

(MDR 2000) at 150�C to determine the cure times. The com-

pound was then vulcanized in the compression molding accord-

ing to the predetermined cure times.

Mechanical Properties

The vulcanizates were cut into dumbbell shape according to

ASTM D412 Die, and the tensile strength was measured at

room temperature using Instron (Model 1011, USA) according

to ISO 37 (Type 1). Abrasion resistance of the vulcanizates in

terms of DIN volume loss was conducted on an APH-40 Abra-

sion tester (Hampton Test Equipment) according to DIN 53516.

Modeling by Using CCD Approach

For each response, CCD was used to design experiments for

the four factors: reaction temperature and time, %DPNR in the

rubber mixture, and CTA amount; five level values were pro-

vided for every factor, as shown in Table III. The levels of these

factors were chosen based on previous experiments and litera-

ture,23 and there are four repeated runs at the central levels.

By using regression analysis, multiple regression equations were

developed [eq. (1)], followed by statistical analyses, which

include analysis of variance (ANOVA) and F-test for testing sig-

nificance of overall models and each coefficient. All of these

were carried out by a trial version Minitab 16.

Y ¼ b0 þ
Xn¼4

i¼1

biXi þ
Xn¼4

i¼1

biiX
2
i þ

Xn¼4

i¼1

Xn¼4

j¼1

bijXiXj (1)

where n corresponds to the number of factors, Y is the
response variable (tensile strength or abrasion), and Xi is in-
dependent variable. bi is the linear coefficient, whereas bii
and bij are squared and interaction coefficients for each varia-
bles Xi and for each pair (Xi and Xj), respectively. The mathe-
matical model in eq. (1), comprising linear, quadratic, and
interaction terms, explains the relationship between inde-
pendent and dependent variables.

Modeling by Using ANN Approach

ANN is a highly simplified model of decision-making and pre-

dicting processes and is inspired by biological neural structures

of the central nervous system. It imitates the function of a

human brain in processing information to understand the

input–output relationship and finally being able to transform

inputs into meaningful outputs. The obtained knowledge is

then used in the prediction of response values.

In brief, ANN has basic elements, which are three layers (so-

called input, hidden, and output layers), weights, bias, and

transfer functions.36–38 It should be noted that there can be

more than one hidden layer, but usually a network containing

one hidden layer and numerous neurons is enough to perform

a task. Each neuron, or node, in the input layer corresponding

to each independent variable sends a vector of the variable,

which must be modified according to eqs. (2) and (3), to all

neurons in the hidden layer. Each vector element is calculated

as follows:

netj ¼
Xq
i¼1

wjixi þ lj (2)

yj ¼ f ðnetjÞ ¼ 1
1þ enetj

(3)

where netj is the net input to the jth neuron in the hidden
layer, xi is the variable from the ith neuron in the input layer,
q is the number of neurons in the input layer, wji is the con-
nection weight from the ith neuron in the input layer to the
jth neuron in the hidden layer, lj is the bias corresponding to
the jth neuron in the hidden layer, and yj is the output for
the jth neuron in the hidden layer, calculated by using a
transfer function, f(netj). In addition, besides the sigmoid
function shown in eq. (3), one could use other nonlinear
transfer functions, such as a log function, a segment function,
and a Gauss function.39

Next, output vectors from every neuron in the hidden layer are

modified by using eqs. (2) and (3) where currently j represents

the jth neuron in the next layer, i denotes the ith neuron in the

current layer, and q is the number of neurons in the current

layer. Then, the modified output vectors will be sent to each

neuron in the jth layer. Here there is only one hidden layer, and

Table I. Recipe for Emulsion Copolymerization of Styrene and Rubber

Organic component (rubber : styrene ¼ 76 : 24, g) 100.00

Deionized water (g) 305.00

Isopropanol (g) 7.60

SDS (g) 1.14

TEPA (g) 0.24

CHPO (g) 0.19

Hydroquinone (g) 0.83

Table II. Rubber Compound Formulation

Ingredient Amount (phr)

Dried gross polymer 100.00

Zinc oxide 3.00

Stearic acid 2.00

Wingstay 29 (antioxidant) 1.00

Wingstay 100 (antioxidant) 1.25

Highly aromatic oil (lubricant) 2.00

2-Benzothiazolethiol 1.25

Methyl TuadsVR 0.25

Sulfur 1.60
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thus the next layer is the output layer. Each neuron in the out-

put layer corresponds to each dependent variable.

To train a network, a back-propagation feed-forward algorithm

is used. Weight and bias values between each layer pair must be

corrected to minimize the root mean square error (RMSE)

between the output elements from the output layer (ypre) and

experimental (yexp) values of a dependent variable [eq. (4)]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

m¼1 ypre;m � yexp;m
� �2

p

s
(4)

where p denotes the total number of data points. The correc-
tion is first made to the weight and bias before the output
layer and then propagates backward to the first ones. After
finishing the correction in the backward direction, the whole
process is repeated (i.e., starting from the transmission of
input vectors from the input layer to the hidden layer and
that output vectors from the hidden layer to the output layer)
until an acceptable error (i.e., lower than the property mea-
surement error) is reached.

After the training, the obtained network is validated and tested

using different data sets. Obtaining the best network may

require changes in the transfer function, training function,

learning rate, and the number of neurons in the hidden layer.

In this report, an ANN model, correlating the polymerization condi-

tions and a mechanical-property response, was developed by using the

same data sets used in the CCD studies, which were normalized in the

range 0.05–0.95. However, for the replication at the center point, a sin-

gle number (being the average of those four replicates) is used; that is,

there are 25 runs instead of 28 runs (see Table III). The whole process

of training, validating, and testing a model was conducted by using

NNTOOL box in MATLAB. The performance quality of the network

is determined by RMSE, a plot of predicted versus observed normal-

ized values, and the value of determination coefficient (R2).

RESULTS AND DISCUSSION

Regression Modeling by Using CCD Approach

The regression analysis of the experimental data in Table III

gives estimated regression coefficients [bi, bii, bij as in eq. (1)],

Table III. Central Composite Design for Emulsion Copolymerization and Experimental Responses Used in the CCD and ANN Studies

Run Aa (�C) Bb (h) Cc (%) Dd (phr) Tensile strength (MPa) Abrasion loss (mm3)

1 50 4 25 0.25 19.60 76.00

2 70 4 25 0.25 21.60 64.30

3 50 6 25 0.25 18.60 57.10

4 70 6 25 0.25 21.70 76.80

5 50 4 75 0.25 19.40 35.10

6 70 4 75 0.25 20.30 21.50

7 50 6 75 0.25 20.60 62.40

8 70 6 75 0.25 22.40 72.90

9 50 4 25 0.75 19.30 68.20

10 70 4 25 0.75 20.10 72.10

11 50 6 25 0.75 17.10 86.70

12 70 6 25 0.75 20.20 79.90

13 50 4 75 0.75 15.45 51.85

14 70 4 75 0.75 21.30 50.70

15 50 6 75 0.75 19.60 59.10

16 70 6 75 0.75 21.70 53.20

17 40 5 50 0.50 17.70 63.00

18 80 5 50 0.50 18.30 66.20

19 60 3 50 0.50 12.40 82.70

20 60 7 50 0.50 18.10 72.10

21 60 5 0 0.50 18.50 74.10

22 60 5 100 0.50 14.20 44.80

23 60 5 50 0.00 20.70 51.50

24 60 5 50 1.00 14.25 56.55

25 60 5 50 0.50 20.30 64.30

26 60 5 50 0.50 19.90 72.90

27 60 5 50 0.50 21.20 91.60

28 60 5 50 0.50 18.30 82.70

aA ¼ reaction temperature, bB ¼ reaction time, cC ¼ %DPNR in the rubber mixture, dD ¼ CTA amount and its unit is phr (part per hundred of organic
component).
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as listed in Table IV. The P-value corresponds to the T-value,

which is the ratio of a coefficient and its corresponding stand-

ard error (results not shown). When the P-value is less than

0.05, this indicates 95% confidence that the variation does not

occur by chance. As a result, a model term with P < 0.05 is

considered significant and has a significant effect on the

response.40

In Table IV, since P > 0.05, none of these model terms are sig-

nificant to the first response (tensile strength), whereas only C

and D2 are significant to the second response (abrasion loss).

The results of the former response are consistent with ANOVA

results in Table V, which shows P > 0.05 for all terms. For the

latter response, the results are slightly different; that is, only the

linear term is considered significant in the ANOVA Table (P <

0.05). Nonetheless, low values of both R2 and adjusted R2 of

both responses’ models imply a poor fit, which is in agreement

with the insignificance of the regression terms in Table V (P-

value >0.05). Furthermore, Figure 1(a,b) show the scatter

around the lines with slopes of one, confirming poor fitting

models for both responses. As a result, it can be said that the

relationships between the reaction conditions and each property

are too complicated and cannot be simply described by quad-

ratic polynomial equations developed from CCD approach.

Modeling by Using ANN Approach

We first tried to build only one model for two responses, but

the model performance was unsatisfactory. Instead, better per-

formance is attained when developing one model for each

response, the topology details of which are shown in Table VI.

This approach has similarities to a network with one neuron in

an output layer for experiments having multiple responses,

which is also found in polymer-related literatures.36–38 For

instance, Delfa et al.36 tried to develop one model for three

responses in order to optimize conditions for styrene-butadiene

rubber emulsion polymerization and eventually found out that

one model for each response shows better performance.

In Table VI, for each response, four neurons in the input layer

correspond to the four factors (reaction temperature and time,

%DPNR, and CTA amount). Only one hidden layer was found

to be enough for the tasks, and the number of neurons was

increased from a small number to a number yielding the model

with the best performance. Both optimum networks for each

response use a sigmoid function as the transfer function and

the gradient descent approach (GDA) with adaptive learning

rate as the training function. Small values of RMSE that are

lower than the measurement errors calculated from repeated

experiments (0.094 and 0.132 for respective normalized tensile

strength and abrasion loss values) justify the best performance

of both models. Furthermore, the quality of fit can be visualized

in Figure 2(a,b) for tensile strength and abrasion loss,

Table IV. Results of Regression Analysis and Corresponding T- and P-Values of Quadratic Polynomials for Tensile Strength and Abrasion Loss

Model term

Tensile strength Abrasion loss

Coefficienta T-value P-value Coefficienta T-value P-value

Constant 19.9250 14.918 0.000 77.8750 12.577 0.000

A 0.4344 1.593 0.135 0.0281 0.022 0.983

B 0.3385 1.242 0.236 1.8156 1.437 0.174

C �0.1260 �0.462 0.651 �4.8531 �3.840 0.002

D �0.4656 �1.708 0.111 1.3698 1.084 0.298

A � A 0.0116 0.085 0.934 �0.9184 �1.453 0.170

B � B �0.1603 �1.176 0.261 �0.1184 �0.187 0.854

C � C �0.0915 �0.672 0.514 �1.2402 �1.963 0.071

D � D �0.0212 �0.156 0.879 �1.5793 �2.499 0.027

A � B 0.0086 0.051 0.960 0.6258 0.809 0.433

A � C 0.0258 0.154 0.880 �0.2383 �0.308 0.763

A � D 0.0633 0.379 0.711 �0.2320 �0.300 0.769

B � C 0.1695 1.015 0.328 1.0711 1.384 0.190

B � D 0.0008 0.005 0.996 �0.5664 �0.732 0.477

C � D 0.0023 0.014 0.989 �0.1523 �0.197 0.847

Adjusted R2 0.00 0.38

R2 0.44 0.70

aEstimated regression coefficients are for input data in uncoded units (values are in the same ranges shown in Table 3).

Table V. ANOVA for the Fitted Quadratic Polynomials for Tensile

Strength and Abrasion Loss

Source

Tensile strength Abrasion loss

F P-value F P-value

Regression 0.73 0.718 2.18 0.084

Linear 1.80 0.189 4.50 0.017

Quadratic 0.45 0.773 2.31 0.113

Interaction 0.20 0.971 0.55 0.759
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respectively. Most data are clustered around the lines with

slopes of one, which is in agreement with high R2 values.

A comparison between models obtained from CCD and ANN

approaches is made by comparing R2 and RMSE values. For

both responses, it is clear that the ANN models give higher R2

(Table VI) and lower RMSE than the CCD models (0.386 and

0.23 for respective normalized tensile strength and abrasion

loss), which signifies the suitability of the ANN models over the

CCD models in explaining the relationships between the reac-

tion conditions and mechanical properties.

It should be noted that the total number of data to establish a

network depends on the complex of the input–output relation-

ship.37 In addition, some results in the literature acquire good-

fitting ANN models using the total number of data between 10

and 35 for polymer systems. Vijayabaskar et al.37 shows that a

data set with more than 20 observations is sufficient to suppress

error growth in the attempt to correlate the mechanical proper-

ties to the volume fraction of crosslinked nitrile rubber. Delfa

et al.36 successfully uses about 15–30 data to establish three

models for solid content, Mooney viscosity, and polydispersity

of styrene–butadiene rubber. Dhib and Hyson even used a num-

ber of data as low as 10 to develop models predicting

Figure 1. Predicted versus observed values from the CCD models for (a)

tensile strength and (b) abrasion loss. Polynomial equations used for the

prediction are listed in corresponding figures.

Figure 2. Predicted versus observed normalized (dimensionless) values

from the ANN approach for (a) tensile strength and (b) abrasion loss.

Table VI. Details of ANN Models for Predicting Tensile Strength and

Abrasion Loss

Tensile
strength

Abrasion
loss

Number of neurons
(input : hidden : output)

4 : 5 : 1 4 : 5 : 1

Transfer function Sigmoid Sigmoid

Training function GDA GDA

Learning rate 0.01 0.01

Epochs 15,000 50,000

RMSEa 0.0899 0.0919

R2a 0.84 0.74

aBoth RMSE and R2 presented here were calculated by using dimension-
less (normalized) data. It should be noted that R2 from dimensionless
(normalized) and dimensional data are equal to each other.

6 J. APPL. POLYM. SCI. 2012, DOI: 10.1002/APP.37550 WILEYONLINELIBRARY.COM/APP

ARTICLE



conversion and molecular weight of polystyrene as a function of

time.35

Simulation Results of Mechanical Properties

To perceive how these mechanical properties change over the

factors’ ranges of interest, values of tensile strength and abrasion

loss as a function of each factor were simulated using the

attained ANN models; results are displayed in Figures 3 and 4.

The values of the simulation inputs and of simulation outputs

were in the normalized form (between 0.05 and 0.95), which

were afterward converted to values with units for easy presenta-

tion. Also, for each effect studied, the normalized values of

other factors were fixed at 0.5 and 0.725.

Tensile Strength

Effect of Reaction Temperature [Figure 3(a)]. When the three

other factors (reaction time, %DPNR, and CTA amount) are

fixed at levels of 0.5, the tensile strength slightly increases with

temperature; a similar trend is also observed at the higher levels

(0.725). In this temperature range, the increment is only 1 MPa,

which is equal to the measurement error. Hence, the tensile

strength may be considered constant with temperature. For

emulsion polymerization using redox initiator system, Kohut-

Svelko et al.41 observed that temperatures in this range (50–

70�C) for reactions conducting with enough initiator concentra-

tion do not notably affect monomer conversion, resulting in

constant grafting amount. Similarly, Juntuek et al.22 reported

that the amount of glycidyl methacrylate-g-natural rubber co-

polymer obtained in an emulsion polymerization using redox

initiator is rather constant in the range of 30–70�C. As a result,

the contribution of grafting amount which improves the interfa-

cial adhesion between the polymer domains and rubber matrix

is nearly the same in this temperature range, leading to nearly

unchanged tensile strength of products.

Although at fixed levels of all other three factors (i.e., reaction

time, % DPNR, and CTA amount) tensile strength is nearly

constant over the entire temperature range, increasing levels of

those three factors at the same time can raise the tensile strength

of 18.5–19.3 to 20–21 MPa over the entire temperature range.

Effect of Reaction Time [Figure 3(b)]. The tensile strength

remarkably increases with reaction time and the values of three

fixed factors (reaction temperature, %DPNR, and CTA amount).

Only when the three fixed factors are at the lower levels and reac-

tion time is itself large, a small decrease in tensile strength is

Figure 3. ANN-simulated values of tensile strength as a function of (a) reaction temperature, A, (b) reaction time, B, (c) %DPNR, C, and (d) CTA

amount, D. Levels of the other factors are fixed and denoted in each figure, in both normalized and unnormalized forms.
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detected as the reaction time is increased. The small drop is, how-

ever, less than the measurement error of 1 MPa and thus deemed

negligible.

For emulsion polymerization, the reaction rate increases at the

early stage of the reaction due to abundant amount of available

micelles, later becomes unvarying when the number of particles

is constant and monomer supply is still excessive, and finally

decreases when the monomer droplets outside particles disap-

pear.42 Accordingly, the noticeable rise of tensile strength with

time can be justified by the substantial reaction rate, and the

leveling-off in tensile strength can be ascribed to the diminish-

ing reaction rate at larger time, where the grafting amount is

barely increased. It should be noted that we observed the decay

of the reaction rate beyond 2 h and the reaction rate equal to

zero beyond 5 h (data not shown). In addition, a few research-

ers attribute the time influence to free radicals having more

time in the reaction, resulting in increases in both conversion

and grafting amount.43,44

The leveling-off in tensile strength at longer time does not occur

when reaction temperature, %DPNR, and CTA amount are

increased to the higher levels.

Effect of %DPNR [Figure 3(c)]. The influence of %DPNR on

tensile strength is not apparent—both at the lower and higher

levels of the three fixed factors (reaction temperature and time

and CTA amount). Furthermore, the tensile strength weakly

increases with the levels of those three fixed factors. The small

influence of %DPNR may be explained by the work of Nakason

et al.,18 which reported an increase of 0.1% in monomer con-

version and an increase of 3% in grafting efficiency when graft-

ing methyl-methacrylate onto DPNR, rather than NR, using re-

dox initiators. However, the percent increases in monomer

conversion and grafting efficiency when grafting styrene onto

DPNR, rather than NR, are stated in the report of Tho et al.20

(45% in styrene conversion and 230% in grafting efficiency).

However, the latter report used ammonium peroxy disulfate as

the initiator, which has a different mechanism from the redox

initiator system, used by Nakason et al.18 and the current work.

Effect of CTA amount [Figure 3(d)]. An inverse relationship

between CTA amount and tensile strength is discerned, both at

the lower and higher levels of the three fixed factors (reaction

temperature and time and %DPNR). This phenomenon occurs

because the addition of CTA amount raises the probability of

Figure 4. ANN-simulated values of abrasion loss as a function of (a) reaction temperature, A, (b) reaction time, B, (c) %DPNR, C, and (d) CTA

amount, D. Levels of the other factors are fixed and denoted in each figure, in both normalized and unnormalized forms.
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reactions between free radical species and CTA, leading to reac-

tions that prematurely terminate polymer chain length and

reducing the grafting and polymerization rates, as well as poly-

mer molecular weight, but not altering the number of grafting

sites.18,20,25,45 Consequently, the grafting amount, which is the

weight of the graft copolymer, is lower due to a shorter grafted

chain length, and this results in poor interfacial adhesion

between polymer and rubber phases.45

Similar to Figure 3(a–c), there occurs elevated tensile strength

when levels of the three fixed factors are high.

Although individual effects display quite different influences on

tensile strength (monotonic increase or decrease or fluctuation),

it is discernible in Figure 3(a–d) that increasing values of three

of four factors noticeably improve the tensile strength.

Abrasion loss

Effects of Reaction Temperature and Time [Figure 4(a,b)]. At

both lower and higher levels of the three fixed factors, the

changes in abrasion loss as a function of reaction temperature

and of time are less than the property measurement error of

10.3 mm3, suggesting very weak influences of these two factors.

The measurement error reported herein is not large and

uncommon when compared with those reported in the litera-

ture. Using the same standard (DIN 53516), Rattanasom et al.1

reported abrasion loss DIN measurement error values between

5 and 12.5 mm3 for their filled natural-rubber vulcanizates

(their abrasion loss values are 90–200 mm3), whereas Tabson

et al.46 reported a measurement error of 30 mm3 for Montmo-

rillonite (MMT)-filled natural-rubber vulcanizates (their abra-

sion loss values are 150–500 mm3).

Though the alteration of reaction temperature or time alone

does not significantly affect the abrasion loss, increasing the lev-

els of the three fixed factors can appreciably reduce the abrasion

loss (i.e., improve the abrasion resistance). Presumably, this is

effected by the presence of graft copolymer, which plays an im-

portant role in increasing the interfacial adhesion between

phases and thus enhances both tensile strength and abrasion

resistance.13,46

Effects of %DPNR and CTA Amount [Figure 4(c,d)]. Effects of

%DPNR and CTA amount on abrasion loss are unclear at the

lower levels of the fixed factors owing to the large measurement

error of 10.3 mm3. However, upon fixing the other factors at

their higher levels, abrasion loss is markedly reduced with

increases in %DPNR and CTA amount. The former observation

can be explained by the formation of a larger amount of graft

copolymer when substituting DPNR for NR.18 However, the lat-

ter observation seems inexplicable because published evidence

demonstrates the diminishment of grafting amount with CTA

content, leading to agglomeration of the dispersed phase in

order to maintain its stability in the rubber phase.47 As a result,

the size of the dispersed phase becomes bigger, implying large

interfacial tension (small interfacial adhesion) and leading to

poorer abrasion resistance. Therefore, these results, which indi-

cate the opposite trend, may need to be confirmed. Since mea-

surement error plays a relatively large role in this system (due

to the comparatively small abrasion loss values measured), thus

interfering with the interpretation, the experimental procedure

or equipment may need to be refined in order to confirm the

obtained results.

Despite this problem, it is important to note that the ANN

approach can be used to model even a system with large mea-

surement error, like the current results for abrasion loss. How-

ever, to avoid the problem and to achieve a model with best

performance and reliability, researchers should use only experi-

mental data with high precision.

CONCLUSIONS

In this work, CCD and ANN approaches were used to correlate

the graft polymerization conditions for compatibilized PS/rub-

ber blend (reaction temperature and time, the weight percent

of DPNR in the NR-DPNR mixture, and CTA amount) to

mechanical properties (tensile strength and abrasion loss). How-

ever, correlations for each response are obtained with sufficient

accuracy by the ANN approach with a back-propagation feed-

forward algorithm, rather than the CCD approach, which is

confirmed by low RSME values, R2, and graph visualization. It

thus suggests that the correlations are nonlinear and complex

such that they cannot be simply explained by quadratic polyno-

mial models (i.e., in the CCD approach). In addition, when

attempting to develop only one ANN model for the prediction

of both properties, poor-fitting models with RMSE values

higher than the property measurement errors were attained.

Simulation results of tensile-strength at various reaction condi-

tions by using the ANN model with the best performance are in

agreement with literature, whereas those simulation results of

the abrasion loss are not quite consistent with literature due to

large experimental error and thus need to be reconfirmed. This,

however, suggests that only experimental data with high preci-

sion should be used to train an ANN in order to achieve a

model with not only best performance but also high reliability.
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12. Vranješ, N.; Lednický, F.; Kotek, J.; Baldrian, J.; Rek, V.; For-
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